Centre for Philosophy of Science Applied Evolutionary Epistemology Lab

Frietson Galis

ON THE EVO-DEVO OF BODY PLANS

Course Description

The course addresses the evolution and development of body plans. The focus will be on a central question in the study of biological diversity, how do developmental pathways constrain evolutionary diversification? More specifically we will discuss questions such as: why are the gene networks and developmental mechanisms underlying vertebrate body plans so constant and why do some traits (e.g. number of eyes, digits, lungs, cervical vertebrae) hardly ever change, whereas others (e.g. tooth and nipple number) are extremely variable? What is the role of stabilizing and directional selection? Which internal and external factors allow the breaking of strong evolutionary constraints? I will focus on vertebrate body plans, but I will also discuss case studies on aspects of body plan evolution of insects and other non-vertebrates.


Day-by-Day Program

Lecture 1: Conservation and Diversification of Phylotypic Stages: On the Importance of Conservation of Early Embryogenesis for the Conservation of Body Plans.

  1. Richardson MK. 1999. Vertebrate Evolution: The Developmental Origins of Adult Variation. BioEssays 21:604–613
  2. Galis, F. and J.A.J. Metz (2001). Testing the Vulnerability of the Phylotypic Stage: On Modularity and Evolutionary Conservation. J. Exp. Zool. (Mol. Dev. Evol.) 291, 195-204.
  3. Newman SA. 2011. Animal Egg as Evolutionary Innovation: A Solution to the "Embryonic Hourglass" Puzzle. J Exp Zool B Mol Dev Evol. 2011 Nov 15;316(7):467-83.
  4. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P. 2010. Gene Expression Divergence Recapitulates the Developmental Hourglass Model. Nature. 468:811-4.

 

Lecture 2: Evolution and Development of Novelties

  1. Valena S, Moczek AP. 2012. Epigenetic Mechanisms Underlying Developmental Plasticity in Horned Beetles. Genet Res Int. 2012;2012:576303.
  2. Newman and Mueller 2010. Morphological evolution. Epigenetic Mechanisms.
  3. Galis, F., J. A. J. Metz 2007. Evolutionary Novelties: The Making and Breaking of Pleitropic Constraints. Integr. Comp. Biol. 47: 409-419.
  4. Harjunmaas Jernvall et al 2012 On the Difficulty of Increasing Dental Complexity

 

Lecture 3: On Dollo's law: the Evolution and Loss of Complex Traits

  1. Goldberg, E. E., and B. Igić. 2008. On Phylogenetic Tests of Irreversible Evolution. Evolution 62:2727–2741.
  2. Kohlsdorf, T., and G. P. Wagner. 2006. Evidence for the Reversibility of Digit Loss: a Phylogenetic Study of Limb Evolution in Bachia (Gymnophthalmi-dae: Squamata). Evolution 60:1896–1912.
  3. Galis, F., J.W. Arntzen and R. Lande.  2010. Dollo’s Law and the Irreversibility of digit loss in Bachia.  Evolution 8:2466-76
  4. Fenwick, Allyson M.; Greene, Harry W.; Parkinson, Christopher L. 2011. The Serpent and the Egg: Unidirectional Evolution of Reproductive Mode in Vipers. J. Zool. Syst. Evol. Res. 50: 59-66.

 

Lecture 4. Contributions of Evo-devo to Paleontology. On the Digit Development of the Dinosaur Ancestors of Birds.

  1. Vargas, A. O. and Fallon, J. F. Birds have dinosaur wings: the Molecular Evidence. J.Exp. Zool. B 304, 86–90 (2005).
  2. Galis, F. Kundrát, M. Metz, J.A.J. (2005) Hox Genes, Digit Identities and the Theropod/Bird Transition. J. exp. Zool. B (Mol. Dev. Evol.) 304, 198-205.
  3. Xu X, Clark JM, Mo J, Choiniere J, Forster CA, Erickson GM, Hone DW, Sullivan C, Eberth DA, Nesbitt S, Zhao Q, Hernandez R, Jia CK, Han FL, Guo Y. 2009. A Jurassic Ceratosaur from China Helps Clarify Avian Digital Homologies. Nature. 459:940-4.
  4. Tamura K, Nomura N, Seki R, Yonei-Tamura S, Yokoyama H. 2011. Embryological Evidence Identifies Wing Digits in Birds as Digits 1,2,3. Science 331: 753-757

 

Lecture 5: Body Plan Evolution: On Constraints, Trade-offs and Ecological Selection.

  1. Carrier DR (2004) The Running-fighting Dichotomy and the Evolution of Aggression in Hominids. In: Meldrum J, Hilton C, editors. From Biped to Strider: The Emergence of Modern Human Walking, Running, and Resource Transport. New York: Kluwer/Plenum Press. pp. 135–162.
  2. Carrier D.R. in press. The Fight or Flight Dichotomy: Functional Tradeoff in Specialization for Aggression Versus Locomotion. Chapter in Book on Locomotion, Edited by Bertram J.E. (Will be provided later.)
  3. Varela-Lasheras, I., Bakker A.J., van der Mije S.D., Metz J.A.J., Van Alphen J., Galis F. 2011. Breaking Evolutionary and Pleiotropic Constraints in Mammals. On Sloths, Manatees and Homeotic Mutations. EvoDevo 2011, 2:11 (doi:10.1186/2041-9139-2-11).
  4. Galis, F., ten Broek C.M.A., van der Mije S.D. ,van Dongen S., van Alphen J., submitted. Running for Life. Selection Against Homeotic Transformations in Fast Running Mammals. (Will be Provided Later)

Suggested Further Reading

Lecture1:

  1. Sander K. 1983. The Evolution of Patterning Mechanisms: Gleanings from Insect Embryogenesis and Spermatogenesis.In: Goodwin BC, Holder N, Wylie CC, editors. Development and Evolution. Cambridge: Cambridge University Press. P 137–159
  2. Galis, F. and B. Sinervo (2002). Divergence and Convergence in Early Embryonic Stages of Metazoans. Contr. Zool. 71 (1), 101-113.
  3. Ploeger, A., van der Maas, H.L.J., Raijmakers, M.E.J., Galis, F. (2009). Why Did the Savant Syndrome not Spread in the Population? A Psychiatric Example of a Developmental Constraint. Psychiat. Res. 166(1):85-90.
  4. Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM. 1997. There is no Highly Conserved Embryonic Stage in the Vertebrates: Implications for Current Theories of Evolution and Development. Anat Embryol 196:91–106.
  5. Sander K, Schmidt-Ott U. 2004. Evo-devo Aspects of Classical and Molecular Data in a Historical Perspective. J Exp Zool B Mol Dev Evol. 2004 Jan 15;302(1):69-91. Erratum in: J Exp Zoolog Part B Mol Dev Evol. 2004 May 15;302(4):341.

Lecture 2:

  1. Galis, F., 2000. Key innovations and radiations. In: The character concept in Evolutionary Biology. Ed. G.P. Wagner. Academic Press. London.
  2. Prud'homme B, Minervino C, Hocine M, Cande JD, Aouane A, Dufour HD, Kassner VA, Gompel N. 2011 Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature 473: 83-86.
  3. Moczek, A. P. 2011. The origins of novelty. Nature 473: 34-35
  4. Mueller, G.B., Streicher, J. 1989. Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb – A caenogenetic feature triggers phenotypic  novelty. Anat. Embryol. 179: 327-339.

Lecture 3:

  1. Galis, F., van Alphen J.J.M, and J.A.J. Metz (2001). Why five fingers? Evolutionary constraints on digit numbers. Trends Ecol. Evol.16, 637-646.
  2. Wake, D. B.,Wake, M. H., Specht, C.D. 2011. Homoplasy: From Detecting Pattern to Determining Process and Mechanism of Evolution . Science 331: 1032-1035  

Lecture 4:

  1. Wagner GP, Gauthier JA. 1999. 1,2,3=2,3,4: a solution to the problem of the homology of the digits in the avian hand. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5111-6.
  2. Towers M, Signolet J, Sherman A, Sang H, Tickle C. 2011. Insights into bird wing evolution and digit specification from polarizing region fate maps. Nat. Commun. 2:426.

Lecture 5:

  1. Carrier DR. 2011. The advantage of standing up to fight and the evolution of habitual bipedalism in hominins. PLoS One. 2011;6(5):e19630.
  2. Galis, F. 1996. The application of functional morphology to evolutionary studies. Trends Ecol. Evol. 11 (3): 124-129.
  3. Carrier DR (1984) The energetic paradox of human running and hominid evolution. Curr Anthropol 25: 483–495.
  4. Kemp T.J., Bachus K.N., Nairn J.A., Carrier D.R. 2005. Functional tradeoffs in the limb bones of dogs selected for running versus fighting. J. exp. Biol. 208: 3475-3482.
  5. Ten Broek C.M.A., Bakker A.J., Varela-Lasheras I., Bugiani M., Van Dongen S., Galis F. 2012. Evo-devo of the human vertebral column. On homeotic transformations, pathologies and prenatal selection.  Evol. Biol. 39:456-471,  (doi:10.1007/s11692-012-9196-1).